Matmin S2

Nomor 1
Diketahui a = t i - 8 j + h k dan b = (t +2) + 4 j + 2 k. Jika a = - b maka vektor a dapat dinyatakan ...
A. i + 8j + 2 k
B. i + 8 j - 2k
C. i - 8j + 2k
D. - i - 8j + 2k
E. - i - 8j - 2k

Pembahasan
a = - b maka t i - 8 + h k = - (t +2) i - 4 j - 2 k
t = - (t +2)
t = - t - 2
2t = -2
t = -1
lalu h = -2
sehingga, a = - i - 8 j - 2 k
Jawaban: E

Nomor 2
Jika vektor a = 10i + 6 j - 3k dan b = 8 i + 3 j + 3k serta c = a - b, maka vektor satuan yang searah denga c adalah...
A. 6/7 i + 2/7 j + 3/7 k
B. 2/7 i + 3/7 j - 6/7 k
C. 2/7 i - 3/7 j + 6/7 k
D. 6/7 i - 3/7 j - 2/j k
E. -2/7 i + 6/7 j - 3/7 k

Pembahasan
c = a - b = (10 i + 6 j - 3k) - (8i + 3 j + 3k) = 2 i + 3j - 6k
Sehingga
Menghitung besar vektor
Maka vektor yang searah dengan c adalah
c = (2, 3, -6) / 7 atau c = 2/7 i + 3/7 j - 6/7 k
Jawaban: B

Nomor 3
Diketahui titik-titik A (2, 5, 2), B (3, 2, -1), C (2, 2, 2). Jika a = AB dan b = CA dan c = b - a maka vektor c adalah...
A. (1,5,3)
B. (-1,5,3)
C. (-1,0,3)
D. (-1,3,5)
E. (-1,-3,5)

Pembahasan
a = AB = B - A = (3,2,-1) - (2,5,2) = (1,-3,-3)
b = CA = A - C = (2,2,2) - (2,5,2) = (0,-3,0)
c = b - a = (0,-3,0) - (1,-3,-3) = (-1,0,3)
Jawaban:C

Nomor 4
Diketahui U = 3 i + 2 j + k dan v = 2i + j dimana W = 3 U - 4 V maka besar W =...
A. √5
B. √7
C. √11
D. √13
E. √14

Pembahasan
W = 3 (3 i + 2 j + k) - 4 (2i + j) = i + 2j + 3k
Menghitung besar vektor 
Jawaban: E

Nomor 5
Diketahui vektor u = 2 i - 3 j + 5 k dan v = - 3 i - 5 j + 2 k menga[it sudut Ɵ. Maka nilai tan Ɵ adalah...
A. √2
B. √3
C. √5
D. √6
E. 1
Pembahasan
Menghitung sudut vektor
Jadi Ɵ = 60 derajat
Sehingga tan Ɵ = tan 60 = √3
Jawaban: B
Nomor 6
Jika a = i - 2j + k, b = 2i - 2j - 3k dan c = -i + j + 2k, maka 2a - 3b - 5 c sama dengan...
A. i + j + k
B. 2i - 5j + k
C. 5i - 2j + k
D. 5i + 2j + k
E. 5 i - 2 j - k
Pembahasan
2a - 3b - 5 c = 2 (i - 2j + k) -3(2i - 2j - 3k) - 5(-i + j + 2k)
2a - 3b - 5c = 2i - 4j + 2k - 6i + 6j + 9k + 5i - 5j - 10k = i + j + k
Jawaban:A
Nomor 7
Jika vektor u dan vektor v membentuk sudut 60 derajat dimana IuI = 4 dan IvI = 2, maka u (v + u) =
A. 13 
B. 15
C. 17
D. 19
E. 20
Pembahasan
u (v + u) = u . v + u2 = IuI IvI cos 60 + u2 
= 4 . 2 . 1/2 + 42
= 4 + 16 =20
Jawaban:E
Nomor 8
Diketahui titik-titik A (3,-1,0), B(2,4,1) dan C(1.0,5). Maka panjang proyeksi vektor AB pada vektor BC adalah...
A. 1/5 √30
B. 2/5 √30
C. 3/5 √30
D. 4/5 √30 
E. √30
Pembahasan
AB = B - A = (2,4,1) - (3,-1,0) = (-1,5,1)
AC = C - A = (1,0,5) - (3,-1,0) = (-2,1,5)
Maka panjang proyeksi vektor AB pada vektor BC adalah...
Menghitung panjang proyeksi vektor
= 12/30 (√30) = (2/5) √30
Jawaban: B

Nomor 9
Vektor-vektor u = 2i - mj + k dan v = 5i + j - 2k saling tegak lurus. Maka harga m haruslah...
A. 2
B. 4
C. 6
D. 8
E. 10
Pembahasan
u tegak lurus v maka:
u . v = 0
(2i - mj + k) (5i + j - 2k) = 10 - m - 2 = 0 
m =8
Jawaban:D
Nomor 10
Diketahui D adalah titik berat segitiga ABC dimana A(2,3,-2), B(-4,1,2) dan C(8,5,-3). Maka panjang vektor posisi d sama dengan:
A. 1
B. 2
C.  √5
D.  √10
E.  √14
Pembahasan
D titik berat segitiga sehingga D = 1/3 (A + B + C)
D = 1/3 (2,3,-2) + (-4,1,2) + (8,5,-3)
D = 1/3 (6,9,-3) = (2,3,-1)
Panjang proyeksi D adalah
menghitung panjang proyeksi
Jawaban: E
Nomor 11
Jika titik-titik P, Q, R segaris dan P(-1,1) dan R (3,5) dan PQ = QR maka titik Q adalah...
A. (3,1)
B. (1,3)
C. (1,1)
D. (3,3)
E. (-3,-1)
Pembahasan
PQ = QR maka Q - R = R - Q 
2Q = R + P 
Q = 1/2 (R + P)
Q = 1/2 (3,5) + (-1,1) = 1/2 (2,6) = (1,3)
Jawaban: B

Nomor 12
Perhatikan gambar berikut, PQ adalah sebuah vektor dengan titik pangkal P dan titik ujung Q.

Contoh soal vektor

a) Nyatakan PQ dalam bentuk vektor kolom
b) Nyatakan PQ dalam bentuk i, j (vektor satuan)
c) Tentukan modulus atau panjang vektor PQ
Pembahasan
Titik P berada pada koordinat (3, 1)
Titik Q berada pada koordinat (7,4)
a) PQ dalam bentuk vektor kolom


b) PQ dalam bentuk i, j (vektor satuan)
PQ = 4i + 3j

c) Modulus vektor PQ


Nomor 13
Diketahui A (1,2,3), B(3,3,1) dan C(7,5,-3). Jika A, B, dan C segaris, perbandingan AB : BC =...
A. 1 : 2
B. 2 : 1
C. 2 : 5
D. 5 : 7
E. 7 : 5

Pembahasan
AB = B - A = (3,3,1) - (1,2,3) = (2,1,-2)
Besar AB = √22 + 12 + (-2)2 = 3
BC = C - B = (7,5,-3) - (3,3,1) = (4,2,-4)
Besar BC = √42 + 22 + (-4)2 = 6
Jadi perbandingan AB : BC = 3 : 6 = 1 : 2
Jawaban: A

Nomor 14
Jika vektor
Contoh soal vektor matematika
maka vektor a + 2b - 3c = ...
Pilihan ganda soal vektor

Pembahasan
Pembahasan soal penjumlahan vektor
Pembahasan soal penjumlahan vektor
Jawaban: D

Nomor 15
Diketahui vektor
Contoh soal vektor
Jika proyeksi skalar ortogonal vektor u pada arah vektor v sama dengan setengah panjang vektor v, maka nilai p =...
A. -4 atau - 2
B. - 4 atau 2
C. 4 atau - 2
D. 8 atau - 1
E. - 8 atau 1

Pembahasan
Hubungan proyeksi vektor dengan panjang vektor
8 - p = 1/2 (8 + p2)
1/2p2 + p - 4 = 0
p2 + 20 - 8 = 0
(p + 4) (p - 2) = 0
p = - 4 dan p = 2
Jawaban: B

Nomor 17 
Diketahui vektor

Apabila vektor a tegak lurus vektor b, hasil dari 2a + b - c = ...

Pembahasan


Nomor 18
Diketahui:
Contoh soal proyeksi skalar
dan proyeksi skalar a dan b adalah 1 1/7. Nilai x = ...
A. -2
B. - 1
C. 0
D. 1
E. 2

Pembahasan
Pembahasan soal proyeksi skalar

Soal latihan vektor 

Nomor 1
Diketahui titik P(1, -2, 5), Q(2, -4, 4) dan R(-1, 2, 7). Maka QR = ...
A. 3 PQ
B. 2/3 PQ
C. 1/3 PQ
D. - 1/3 PQ
E. - 3 PQ

Nomor 2
Diketahui vektor a = 4 i - 5 j + 3k dan titik P(2,-1, 3). Jika panjang PQ sama dengan panjang a dan PQ berlawanan arah dengan a, maka koordinat Q adalah...
A. (2, -4, 0)
B. (-2, 4, 0)
C. (6, -6, 6)
D. (-6, 6, -6)
E. (-6, 0, 0)

Nomor 3
Diketahui A (-1, 2, 7), B(2, 1, 4) dan C(6, -3, 2). Apabila AB = u dan BC = v, maka hasil dari u . v =...
A. 30
B. 22
C. 14
D. 10
E. - 2

Nomor 4
Diketahui titik P(-3, -1, -5), Q(-1, 2, 0) dan R(1, 2, -2). Jika PQ = a dan QR + PR = b, maka a . b =...
A. 16
B. 22
C. 26
D. 30
E. 38

Nomor 5
Vektor a dan b berturut-turut diwakili oleh PQ dan QR dengan P(5, -1, -2), Q(6, 3, 6), dan R(2, 5, 10). Kosinus sudut antara a dan b adalah...
A. 1
B. 2
C. 3
D. -1
E. -2

Nomor 6
Diketahui segitiga ABC dengan A(3,1), B(5,2) dan C(1,5). Besar sudut BAC = ...
A. 120
B. 90
C. 60
D. 45
E. 135

Nomor 7
Garis g melalui A(2, 4, -2) dan B(4, 1, -1) sedangkan garis h melalui C(7, 0, 2) dan D(8, 2, -1). Besar sudut g dan h adalah...
A. 0
B. 30
C. 45
D. 60
E. 90

Nomor 8
Diketahui P = (a, 0, 3), Q = (0, 6, 5) dan R(2, 7, c). Agar vektor PQ tegak lurus pada QR, maka a - c = ....
A. - 3
B. - 2
C. 3
D. 4
E. 6

Nomor 9
Agar kedua vektor a = (x, 4, 7) dan b = (6, y, 14) segaris, maka nilai x - y = ...
A. -5
B. - 2
C. 3
D. 4
E. 6

Nomor 10
Jika O(0,0), P(0,2) dan Q(4,8) maka segitiga POQ...
A. sama sisi
B. siku-siku tidak sama kaki
C. sama kaki tapi tidak siku-siku
D. siku-siku dan sama kaki
E. tidak siku-siku dan tidak sama kaki
Share:

No comments:

Post a Comment